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Abstract. In this paper. we reanalyse the incoherent intermediate scattering function, 
determined by a Monte Carlo simulation of a polymer melt, in the framework of the extended 
mode-coupling theory (MCT). A previous analysis with lhe idealized MCT showed systematic 
deviations between theorj and simulation at low temperams, which muld be qualitatively 
attributed to the neglect of hopping processes. If lhese hopping processes are taken into account 
quantitatively by the application of the enlended MCT. the discrepancies at low t e m m  
disappear. and a (quite) a c c w  estimate of the critical temperature becomes passible. 

1. Introduction 

The liquid-glass transition is preceded by a strong increase of the structural relaxation time. 
Typically, a liquid in the vicinity of the triple point relaxes on the time scale of IO-’* 
s. When the liquid is progressively supercooled, this time scale first rises gradually up to 
about IO-’ s, and then very steeply over many orders of magnitude. The liquid vitrifies 
as soon as the relaxation time adopts macroscopic values (i.e. I d  s or larger) [I ,  2, 3, 41. 
A comparable dependence of the structural relaxation time on temperature is not observed 
during the crystallization process and may thus be looked upon as a generic feature of the 
glass transition. 

An attempt to explain this dynamical behaviour of supercooled liquids was made by the 
mode-coupling approach ta the structural glass transition (see the recent reviews [3,4,5,6]). 
Mode-coupling theory (MCT) predicts that there is a critical temperature T,, situated well 
above the calorimetric glass transition temperature, at which the dynamics of the supercooled 
liquid changes qualitatively. This change in the dynamics results from the competition 
between an ergodicity breaking process, the cuge efect (i.e. rattling motion of the particles 
inside the cages, dynamical changes of the cage configurations) and an ergodicity restoring 
process, which is identified with thermally activated hopping processes [7, 81 following a 
conjecture of Goldstein [9]. The consequences of the cage effect for the dynamics of the 
supercooled liquid are treated in the ideuiized version of the MCT [3, 4, 5, 61, whereas the 
physical origin of the hopping processes as well as the resulting corrections to the idealized 
theory are the subject of the extended MCT [8, 10, 11, 121. 

The primary result of the extended MCT is the prediction of a (rather) universal 
dynamical scaling law in an intermediate frequency (time) range. Irrespective of the exact 
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microscopic nature of the ergodicity restoring process, of its wave vector and (to a large 
extent) of its frequency dependence, it was found that a single relevant control parameter 
suffices to describe the change of the dynamics [SI. Although no microscopic theory for 
thermally activated processes in supercooled liquids has yet been worked out, the extended 
MCT makes precise statements which allow direct experimental tests of the theory [ 121. The 
extended MCT was applied to interpret the light scattering spectra of the ionic salt calcium 
potassium nitrate (CKN), the molecular glass former salol [13] and propylene carbonate 
(PC) [14]. Originally, the spectra for CKN and salol were analysed with the idealized 
theory in a temperature interval ranging from about the melting point to the calorimetric 
glass transition temperature [15, 16, 17, 18, 191. This light scattering analysis found that 
the studied temperature interval can be divided into two parts. For temperatures sufficiently 
above T,, the idealized theory correctly describes the spectra in the whole frequency range 
between the band of the microscopic excitations and the final a-relaxation (i.e. over about 
two to three decades around the minimum of the spectrum). Its applicability is limited to 
the high-frequency wing of this spectral window if the temperature is in the vicinity of or 
below T,. In this low-temperature region the experimental data at smaller frequencies lie 
systematically above the theoretical predictions, indicating that both CKN and salol tend to 
relax more strongly than the idealized MCT predicts [13, 141. 

For polymer melts, a similar observation was made in a Monte Carlo simulation 
of a coarse-grained lattice model [ZO]. In this simulation the incoherent intermediate 
scattering function +;(I) was calculated. This function exhibits a two-step decay in a certain 
temperature interval, which is the typical relaxation behaviour predicted by MCT for @;(t) 
close to Tc [3, 4, 5, 61. Therefore the time evolution of $z(t) was quantitatively analysed 
by the idealized MCT, leading to similar results as found in the light scattering experiments 
mentioned above. There is a high-temperature regime, where the idealizcd theory accounts 
for the decay of @i(f) over about three decades in time, and a low-temperature regime, 
where it overestimates the freezing tendency of the melt. Since this clearly indicates the 
presence of a further relaxation process which should be captured by the extended MCT, 
we decided to check whether the inclusion of hopping processes is able to resolve the 
discovered discrepancies between the idealized theory and the simulation data. 

This paper summarizes the results of this analysis which represents the first quantitative 
application of extended MCT in the time domain. It is structured in the following way: 
section 2 reviews some aspects of the model and of the simulation. Section 3 provides 
the necessary theoretical background for the fits. Section 4 summarizes and discusses the 
results of the extended mode-coupling analysis, and section 5 presents our conclusions. 
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2. Aspects of the model and the simulation 

The polymer melt is simulated with the bond fluctuation model [ZI] which is a coarse- 
grained lattice model [22]. A monomer of such a coarse-grained model does not directly 
correspond to a chemical monomer, but rather to a group of chemical monomers which 
may be represented by an effective bead in their centre of gravity (see figure 1). For simple 
polymers, such as polyethylene, this group roughly contains three to five monomers [23]. 
Since the polymers of the bond fluctuation model have a length N = 10 in this simulation, 
they represent rather short polyethylene chains having a size that is much smaller than 
the entanglement length 124, 2.51. Therefore entanglements cannot be responsible for the 
dynamic features to be discussed below. 

This coarse graining has two consequences. First, the effective bond vectors, resulting 
from the coarse-graining procedure along the chemical polymers, are able to fluctuate in 
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Figure 1. Schematic illusIralion of the consmction of a coarse-grained model for a 
macmmolecule such as polyethylene. In the example shown here, the subchain fonned by 
the three C-C bonds labelled I ,  2. 3 is represented by the effective bond labelled as I, the 
subchain formed by the three bonds 4, 5. 6 IS represented by the effective bond labelled as II, 
etc. In ihe bond fluctuation model on the square (or simple cubic) lattice the length b of the 
effective bond is allowed to fluctuate in a certain range b,i. 4 b 4 b,,, and excluded-volume 
intencnons %e modelled by assuming that each bond occupies a plqquette (or cube) of four 
(eight) neighbouring latlice sites, which then x e  all blocked for further occupation. 

both length and direction to a much larger extent than their chemical counterparts which are 
kept close to the equilibrium values by stiff potentials [26, 27, 281. The bond fluctuation 
model maps this flexibility of the bond vectors onto a lattice by associating a monomer with 
a whole unit cell on a simple cubic lattice [21]. The monomers interact via a hard-core 
potential with each other. In addition to this excluded volume interaction an energy function 
N ( b )  is associated with each bond vector b, which favours the bonds of length b = 3 and 
direction along the lattice axes (i.e. X ( b )  = 0) in comparison to all other available bond 
vectors (i.e. W(b) = E )  [291. During the simulation a monomer is selected at random, and a 
move is attempted over the distance of one lattice spacing in a randomly chosen direction. 
If the adjacent lattice sites in the chosen direction are empty (excluded volume restriction) 
and if the resulting bond vectors belong to the set of allowed bonds [2l] (restriction of 
chain connectivity), the move is accepted with probability exp[-AX/k~T], where AN 
is the change in energy connected with the attempted jump. In this way temperature is 
introduced in the simulation [30]. When the temperature decreases, not only the bonds, but 
also the chains tend to stretch out under the influence of the above-described energy function 
[29]. This energy function thus leads, on the one hand, to a stiffening of the chains with 
decreasing temperature, an effect which is also observed in many interesting attempts to 
model the glass transition of polyethylene rather realistically 126, 27, 281, and on the other 
hand it generates a strong competition between the energetic and packing constraints of the 
chains 1291. This competition drastically slows down the structural relaxation of the melt at 
low temperatures if the density + is large enough [29]. We chose + = 0.52, resulting from + = 8NP/L’  with the number of polymers per simulation box P = 180 and the linear 
dimension of the simulation box L = 30 (i.e. a volume fraction of 53.?% of the lattice 
sites is occupied by monomers) [29]. The simulation box thus contains 1800 monomers. 
To improve the statistics, 16 independent configurations of this system were run in parallel 
so that the total statistics of the data to be presented involves 28 800 monomers. 

The second consequence of the coarse gaining is that the motion of the effective bead 
essentially becomes stochastic and thus comparable to the Monte Carlo dynamics. If one 
uses again polyethylene as an example, a jump of a monomer on the lattice may be related 
to the change of the conformation of a subunit comprising three to five monomers, i.e. 
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to a change of the torsional angle [31]. Since the relaxation time of such a change in an 
equilibrium polyethylene melt is of the order of 10"' s [26, 321 and the acceptance rate of a 
jump in the bond fluctuation model is about IO-' at the considered density 1331, the intrinsic 
time unit of the simulation, the Monte Carlo step (MCS), should approximately correspond 
to a picosecond. A similar identification between the Monte Carlo and the physical time unit 
was obtained in a different application of the bond fluctuation model, in which the model 
potential was tailored in such a way that bisphenol-A-polycarbonate could be simulated 
134, 351. Therefore the estimate 1 MCS NY lo-'' s suggests that a Monte Carlo simulation 
over six to seven decades in time describes dynamical processes ranging from picoseconds 
to s. Certainly, the description of the dynamics by the bond fluctuation model on 
the picosecond time scale is unrealistic. The bond fluctuation model cannot reliably mimic 
dynamical processes on such short time scales. Processes on this time scale are caused by 
phonons which are absent from the model, since the monomers are moved in discrete steps 
of one lattice constant in the simulation. However, this loss of the phonon contribution 
does not exclude a comparison with the MCT because the MCT attempts to describe the 
dynamics of a supercooled liquid on time scales which are larger than the microscopic 
excitation band [3,4,5,6]. For a significant test of the MCT the neglect of phonons in the 
simulation is thus not a drawback. It is more important to have long simulation times and 
to obtain good statistics. Good statistics is necessary for a quantitative comparison with the 
MCT, whereas long simulation times are required to sample the time interval pertinent to 
MCT effects sufficiently and to realize the theoretical precondition of thermal equilibrium 
in the important temperature region as much as possible. 

J Baschnagal and M Fuchs 
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Figure 2. Comparison of the time dependence of <(t) at the external tempature T = 0.16 
after the melt has been equilibrated for 1.4 x IO' MCS (U), 4 x IO6 MCS (+) k d  6 x lo3 MCS 
(0). Note that the curve with the smallest equilibration lime has decayed much more than the 
others and that a WO-step process is noi visible. This two-step process is observed for the data 
equilibrated for 4 x IO6 MCS and remains present if the equilibrntion time is funher increased. 

How an insufficient equilibration time may affect the dynamical behaviour of q ( t )  is 
exemplified in figure 2. This figure compares the relaxation behaviour of q5i(t) recorded 
after three different equilibration times, i.e. after 6 x IO3 MCS (O), 4 x lo6 MCS (+) and 
1.4 x lo7 MCS (0). All three simulations were done at a temperature of T = 0.16 and at 
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the maximum of the static stmcture factor q = 2.92 [30]. The curves for the two smaller 
equilibration times are reproduced from [20]. The one corresponding to an equilibration 
period of 4 x IO6 MCS is for the data used in the idealized mode-coupling analysis [20], and 
for which the extended mode-coupling analysis will be done. The additionally shown curve 
calculated after a relaxation of 1.4 x IO7 MCS results from an exemplary run by which 
we wanted to assess to what extent nonequilibrium effects are still present after 4 x IO6 
MCS. Figure 2 clearly reveals that a relaxation time of 4 x IO6 MCS does not suffice to 
eliminate all nonequilibrium effects on the length scale probed by the maximum of the static 
structure factor. The structural relaxation time of the melt is still underestimated. However, 
the nonequilibrium effects are no longer as pronounced as for the smallest shown relaxation 
time, where they blur the two-step decay of # ; ( I )  completely. This two-step decay remains 
present if the melt is further equilibrated. Therefore we argue that the data to be used 
in the MCT analysis are sufliciently relaxed to admit a test of the general predictions of 
the theory, i.e. of the form of the correlator’s time and wave vector dependence, of the 
temperature dependence of the various parameters introduced in the theoretical formulae 
and of the relationship among these parameters. 

3. Theoretical background 

The previous analysis [20] of the tagged particle correlator (incoherent intermediate 
scattering function) @ ( t )  was based on the universal form that $;(t) adopts close to the 
critical temperature in the ,%relaxation regime [3,4, 5 ,  6, 121 

The @-relaxation regime is defined as the time interval where the tagged particle 
correlator remains close to the nonergodicity parameter f:, which implies Ih;G(t)l << 1 
[3, 4, 5, 6, 121. Formula (1) remains valid when the idealized theory is extended by 
the inclusion of further transport processes [6,  11, 121. In the @-relaxation regime these 
processes, which, for simple liquids, have been identified as hopping processes, can be 
characterized by a single, wave-vector-independent rate, the hopping parameter 6. In 
general, 8 is larger than zero. One expects 6 to vary in an Arrhenius-like way [IO] 

where A is a system-dependent constant and KT stands for the isothermal compressibility 
[Ill. The hopping parameter depends upon the dynamical parameters of the studied glass 
former [4, 6, 111 and is therefore quite different for a system evolving according to a 
deterministic Newtonian dynamics or to a diffusive Brownian dynamics [6]. This difference 
in the nature of the underlying dynamics also emerges in the theory via the microscopic 
time scale to which characterizes the transient short-time decay of a correlator in a time 
regime, where mode-coupling effects are not yet dominant [3]. In the idealized theory these 
mode-coupling effects are solely expressed by the separation parameter U which measures 
the distance to the critical temperature T,, i.e. 

U = C(T, - T) (3) 

where the crossover from the glassy (a =- 0) to the liquid dynamics (U < 0) takes place. The 
existence of this dynamic glass transition is independent of both the microscopic interaction 
and the microscopic dynamics [3,4, 5 ,  61. However, the extent to which this dynamic glass 
transition can be seen in an experiment or in a simulation depends upon the values of the 
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microscopic dynamical parameters and upon the 8-term 13.4. 6, 121. Both U and S specify 
the distance from the ideal transition point and are therefore important theoretical control 
parameters that determine the behaviour of the ,!?-correlator 

3 Baschnagel and M Fuchs 

W )  = g(t / to,  u,Sto) (4) 
in the extended MCT. In the idealized theory (8 = 0) the ,!?-correlator is a homogeneous 
function obeying a one-parameter (i.e. U )  scaling law. Rescaling the time by l /y  and U 

by yzy merely changes G(t )  by a factor y". The exponent a emerging in this homogeneity 
properly of G(t )  is uniquely determined by the equilibrium properties of the glass former 
and characterizes the relaxation of the fluid particles in their cages. Its value for the polymer 
model under consideration is known from the previous analysis [ZO]. In the extended MCT 
the homogeneity property of the p-correlator is preserved as a two-parameter (Le. U and 6 )  
scaling law [SI 

(5) 

U = >/y= Sto = 8/yI+k. (6)  
However, this scaling property of the extended theory will normally not be observed in an 
experiment or simulation, since with the choice y = lu[-i/= it requires 6 to vary critically, 
i.e. Sb cx (Tc - T)"+b)/". Due to (2) such a temperature dependence is not expected. 
Therefore an experimental glass former will not follow one specific scaling line, but move 
along a path C: T + (u (T) ,  S (T) )  which crosses many scaling lines that are labelled by 
different rescaled parameters 8 = Sto/u(i+a)/@"). The path C is fixed by the microscopic 
details of the given glass former. It cannot be varied and avoids the ideal glass singularity 
as long as S # 0 [S, 10, 121. 

The previous analysis of the tagged particle correlator in the framework of the 
idealized MCT [20] exhibited discrepancies between theory and simulation, which could be 
qualitatively attributed to the neglect of hopping processes. In order to check whether this 
interpretation may be confirmed quantitatively, the simulation data have to be reanalysed by 
the extended MCT. This analysis proceeds in the following way. Due to the homogeneity 
properly (5) one may choose y = IUI-~I=, whence 

g(r/to,u,  6to) = y-"(t/toy,uy=, 6toy'+b) =: y-"g(i ,  6, s^) 
if U and 6 simultaneously change according to 

with to := to/lol'/zu. A priori, this formula contains five unknown parameters: the 
nonergodicity parameter j:, the critical exponent a, the total prefactor of the ,!?-scaling 
function h;$, the time scale of the j3-process tm and the scaled hopping parameter 2. 

However, we will fix the nonergodicity parameter and the critical exponent at the values 
obtained in the idealized analysis [ZO], i.e. at 

a = 0.239 j; = 0.80. (8) 
Theoretically, both a and f: are unaffected by the inclusion of hopping processes. 
Therefore it should be possible to determine them reliably by the idealized MCT. Even 
if hopping processes are important for the relaxation behaviour of the correlator, there is a 
temperature interval on the liquid side (i.e. U < 0), where the idealized theory is supposed 
to apply. This temperature interval is limited from below by a temperature T' defined 
via lu(T')I =: 1001 = (Sto) b/( l tZ)  [see (7)], at which hopping processes start to become 
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dominant. From above it is limited by a temperature at which corrections to the leading- 
order expressions (I), (4) and (5) can no longer be neglected. In practical applications the 
lower limit T' is hard to determine unambiguously. Data belonging to this transition region 
may still be fitted reasonably by the idealized theory if the critical exponent a is allowed 
to increase with decreasing temperature. Such an observation was made in the mentioned 
light scattering study of CKN and salol [131. However, since this kind of force fitting 
the idealized theory could not compete with an extended MCT analysis when approaching 
Tc more closely, it was suggested in [I31 to optimize the idealized fits at short times (i.e. 
at t e &, where &effects are either small or completely negligible [I211 and to accept 
deviations at long times [13]. Exactly this strategy was pursued in the previous analysis of 
@;(f) in the framework of the idealized MCT [20] so that the determined value for a should 
be reliable. 

remain to be adjusted. This 
was done by the following two steps. First, the complete ,¶-scaling function was calculated 
numerically [I21 for a specific value of 8 in (7). Then g(t̂ + &I,  I) was inserted in (7) and 
the remaining two fit parameters (h;t{ and to) were optimized by inspection. These two 
steps were iterated until the quality of the fit was satisfactory. 

After fixing a and f; three parameters hS,tg, f,, and 
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Figure 3. Comparison of fit CUNS for different i-values at T = 0.16. The solid c u m  represents 
the simulation data. and the horizontal solid line indicates fhe value of lhe nonergodicity 
parmeter. >e dash-dotfed, dashed and dotted CUN- correspond to lhe fit by (7) with s  ̂ = 20, 
6 = 40 and S = 80. respectively. F e  CUNS with = 20 and 8 = 80 serve to calculate the 
errors on the 81 results obtained for 6 = 40. 

Figure 3 exemplifies this fit procedure for T = 0.16. The nonergodicity parameter 
(horizontal solid line) helps to guide the fit because its intersection point with the simulation 
data (solid curve) defines the time at which G ( t )  vanishes. This matching of the simulation 
and theoretical results at f; determines f,,. Finally. one can tune hit; in order to describe 
the decay of the simulation data as well as possible. In this way the dashed, the dotted and 
the dash-dotted line were obtained. While the dashed line represents = 40 (the result to 
be discussed further in the following section), the other two lines correspond to two extreme 
8-values (i.e. C? = 80 (dotted line) and = 20 (dash-dotted line)), which stiIl yield fits of 
similar quality. Increasing or decreasing i further ruins the fit. Therefore these &values 
were used to determine the error of 1 at T = 0.16. In the same way the error of s  ̂ was 
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obtained at the other temperatures. Since a variation of s  ̂ simultaneously affects all other 
fit parameters [13], it can be used to estimate the uncertainties on both .s and 6 .  

From these fits it is possible to extract the temperature dependence of the separation 
parameter U and the hopping parameter 6 by (see (7)) 

J Baschnagel and M Fuchs 

if the change of the microscopic time scale to with temperature is known additionally. In 
the previous idealized analysis [20] the temperature dependence of to was obtained by fitting 
the initial decay of q5;(t) with the short-time expansion of the tagged particle corrclator in 
the framework of the Rouse model [33, 371 

G(t) x exp [ - q ’ b ’ f i ]  for ruars < r < TR (10) 

which is valid for times that are larger than a crossover time tmss, below which the 
microscopic details of the model affect the dynamics of the monomers. and also much 
smaller than the Rouse time TR. i.e. the longest relaxation time of a (nonentangled) chain. 
In (10) bZ stands for a mean square bond length which is weakly temperature dependent 
(i.e. b2 = 8.63,8.58 at T = 0.16,0.21, respectively) 1291. The result of the fit by (10) 
is reproduced in some figures of the next section for the sake of comparison with the 
idealized analysis [ZO]. Mathematically, the time scale to enters the mode-coupling theory 
by matching (7) to the transient microscopics in the vicinity of T,. [3, 121. It has not 
been possible to determine the temperature dependence of to beyond the asymptotic result, 
to x tO(T,) = constant, yet. Whereas this asymptotic result appears to hold in simple 
liquids [13, 14, 15, 16, 38, 391, the previous analysis of the initial decay of @:(I) by (10) 
[ZO] resulted in a strong temperature dependence of the transient microscopic time scale 
to. This strong temperature dependence can be expected to shift the theoretical matching 
parameter ro. In the following we will therefore assume that the time scale taken from the 
Rouse analysis determines the temperature dependence of the mode coupling to. 

Since the time scale 10 enters tb- prefactor hit:, this prefactor should exhibit the same 
temperature dependence as to, provided h; is constant. Asymptotically, this is expected in 
the vicinity of T,., where all quantities that do not vary critically with temperature (i.e. that 
neither vanish nor diverge in the vicinity of T,, such a s  f;, h;, a and 8 )  may be replaced 
by their values for T = T, in leading order [3, 121. In order to test to what extent the 
studied model reflects this theoretical expectation the temperature dependence of hit; can 
be compared with that of ro derived by the Rouse model. Yet, it has to be added that a 
temperature dependence of to cannot be unambiguously distinguished from a temperature 
dependence of h; in OUT analysis due to the scaling property of (7) [13]; a temperature 
dependence of the critical amplitude is expected in light scattering experiments [39]. The 
above reasoning therefore rests upon the polymeric character of the short-time dynamics. 

Besides the short-time fit by the Rouse model the figures of the subsequent sections will 
also reproduce the Kohkausch function 

+:(t) = fSCexp[-(t/?K)JK] 4 (11) 
of the idealized analysis [ZO]. This function was used with a temperature-independent 
exponent p K  = 0.515 to describe the final structural decay, i.e. the a-relaxation [3], of 
@;(t) .  A constant value for px implies the time-temperature superposition principle which 
is a central result of the idealized MCT for the a-process 131. In the presence of hopping 
processes it is not completely clear to what extent the time-temperature superposition 
principle is still relevant for the wrelaxation [8, 11, 121. 
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4. Extended mode-coupling analysis 

This section reports the results of the extended MCT analysis for the incoherent intermediate 
scattering function y ( t )  which was calculated at the maximum of the static structure factor 
(i.e. at q = 2.92 [30]) over a time interval of 5 x 106-107 MCS in the temperature range 
T E [0.16.0.21] [ZO]. This temperature range was split into two parts by the analysis with 
the idealized MCT. For T > 0.19 the idealized theory could account for the decay of @ ( t )  
over an intermediate time interval of about three decades. This interval was preceded by one 
in which the correlator was well described by (lo), and succeeded by another where (11) 
yielded a good fit. For T < 0.19 the idealized theory extends the initial fit by the Rouse 
model for about one decade to longer times, but then systematically underestimates the 
ability of q$(t) to relax. This discrepancy between the idealized theory and the simulation 
data becomes progressively pronounced with decreasing temperature and may be rationalized 
by the neglect of hopping processes [ZO]. 

h . ,  
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Figure 4. Comparison of the fit by the idealized (darted curve) and extended (dashed curve) 
MCT for the simulation data (solid curve) at T = 0.16. The solid horiwnwl line is the value 
of the nonergodicily pnrameter. 

4.1, Line shape analysis 

Figure 4 compares the idealized fit with that of the extended MCT for the temperature 
T = 0.16 at which the deviation between idealized theory and simulation was largest. This 
comparison shows that the extended analysis increases the interval of the fit for more than 
one decade to longer times. The extended MCT thus successfully describes the onset of 
the a-relaxation of r$i(t), which could not be achieved by the idealized analysis. In order 
to obtain this improvement at long times it seems that one has to allow the extended fit to 
become worse than the idealized one at the beginning of the two-step process (i.e. in the 
time interval between l b  and lo4 MCS). However, an extension of the fit to shorter times 
merely increases the overlap between the MCT and the Rouse model, as can be seen from 
figure 5. Such an increase is fortuitous and cannot be considered as an argument in favour 
of the idealized fit. 
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Figure 5. Comparison of the simulation data (solid line) and various fitting formulae at 
T = 0.16, The shon-time expansion of the Rouse model and the Kohlrausch law (KWW) 
are represented by a dotted line and by a dashdotted line. respectively. The dashed line 
corresponds to the fit by the extended MCT using the data compiled in table 3. 
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Figure 6. Comparison of the simulalion data with the same fitting formulm and the same choice 
for the types of l i n e s  in figure 5 at T = 0.17. 

Figures 5, 6 and 7 corresponding to T = 0.16,0.17,0.18 show that the extended MCT 
starts to describe the decay of @;(I )  just at the edge of the interval where the Rouse model 
still applies, and then continues the description for about 2.5 decades (i.e. from about 5 x lo3 
to lo6 MCS) to longer times. When the MCT begins to deviate from the simulation data, 
the Kohlrausch function continues the fit to arbitrarily long times. 

The result of the extended analysis in the low-temperature interval T E [0.16,0.18] 
may be summarized in the following way: figures 5 to 7 show that the extended MCT can 
describe the decay of @;(f) in the @-relaxation regime and thus resolves the discrepancies 
found in the previous idealized analysis, which means that in this simulation hopping 
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Figure 7. Comparison of the simulation data with the same fininz formulae and the same choice 
for the types of line as in figure 5 at T = 0.18. 
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Figure 8. Comparison of the simulation data with Ihe same fitting formulae and the same choice 
for the types of line as in figure 5 at T = 0.19. In addition, the fitted curve obtained from the 
idealized MCT is reproduced from 1201 as a dotted line. 

processes are important for the relaxation of the tagged particle correlator. 
In the high-temperature region T E [0.19,0.21] 6 # 0 fits were performed in order to 

estimate the errors of our analysis in the same way as for low temperatures. The results 
as well as those for T E [0.16,0.18] are compiled in the tables 1-3. By choosing 8 0 
one cannot improve the quality of the fit except at T = 0.19. The reason for this is 
that S increases only weakly at high temperatures (see (2)) in comparison to the increase of 
u ( ~ + ~ ) / ( ~ ) .  Therefore s  ̂ in (7) becomes negligible for T > 0.20. The temperature T = 0.19 
belongs to the region close to la01 (see the discussion following (8)) so that hopping 
processes contribute noticeably to the relaxation 4;(t), although a fit by the idealized theory 
still yields a reasonable result. Figure 8 compares the idealized and extended analysis at 
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T = 0.19. It shows that the extended fit works better in the time interval which can be 
covered neither by the Rouse model nor by the Kohlrausch function. Therefore the choice 
6 # 0 is preferable. 

J Baschnagel and M Fuchs 

Table l. Fir muls to determine the lower bound of Ihe e m  on the dnta wmpiled in table 3, 

T kLtz tFff logt, a x l d  i 6xld 

0.21 0.59 4.78 4.05 -2.42 0.02 4.16 
0.20 0.66 7.64 4.42 -2.04 0.04 3.10 

0.18 0.76 13.38 5.125 -1.24 0.3 2.80 
0.17 0.88 25.45 5.72 -0.87 15 2.48 
0.16 0.875 24.85 6.445 -0.39 20 2.77 

0.19 0.70 9.n 4.75 -1.59 0.06 1.70 

Table 2. Fit results to determine Ihe upper bound of the emr on the dnta compiled in table 3. 

T h:ri; 10"" logr, o x l d  i 6x108 

0.21 0.555 3.93 4.01 -2.26 0 0 
0.20 0.63 5.0 4.38 -1.94 0 0 
0.19 0.67 7.64 4.78 -1.41 0.2 4.69 
0.18 0.725 11.31 5.185 -1.06 0.6 4.15 
0.17 0.84 20.95 5.77 -0.75 2.5 3.17 
0.16 0.84 20.95 6.75 -0.25 80 3.62 

Table 3. Values of h;$. 
12. 

r.,. U, and 6 corresponding to the resultc presented in figum 5- - 

0.21 057 4.14 4.03 -2.34 0 0 
0.20 0.645 6.94 4.4 -1.99 0 0 
0.19 0.685 8.92 4.75 -1.53 0.1 2.72 
0.18 0.745 12.68 5.15 -1.16 0.4 3.29 
0.17 0.855 22.56 5 1 3  -0.81 1.8 2.71 
0.16 0.87 24.26 6.6 -0.32 40 3.23 

The results presented so far can be summarized graphically by plotting the @-scaling 
function g(?, h l ,  1) versus the reduced time ? = t / f .  for all temperatures of the interval 
T E [0.16,0.21]. Such a plot is shown in figure 9. If the decay of q4;(t) in the @-relaxation 
regime were accurately described by the idealized MCT, one would expect the simulation 
data to collapse onto the temperature-independent idealized master curve g(?, &l, 2 = 0) 
for intermediate times and to follow this curve for longer, the smaller the temperature is. 
In order to exemplify this behaviour, figure 9 shows g(?, 51, = 0) as a dashed line in 
addition to the scaling curves for finite 1 (solid lines). Only T = 0.20,0.21 satisfy the 
prediction of the idealized MCT. For these two temperatures no major improvement of the 
fit quality can be achieved by the inclusion of hopping processes. However, for T 4 0.19 
deviations from the idealized @-scaling function become clearly visible. One has to choose 
s  ̂ # 0 to obtain a good description over a time interval comparable to that of the idealized 
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Figure 9. Plot of the B-scaling function g(?, + I ,  8) = ( @ ; ( I )  - f;) / h ;  ( s / l , ) "  versus the 
reduced time i = f j l , ,  The symbols refer to: T = 0.16 (0). T = 0.17 (+), T = 0.18 (0). 
T = 0.19 (x). T = 0.20 (A) and T = 0.21 (*). The solid lines correspond to the theoretically 
calculated scaling functions at the respective temperatures. For T = 0.20.0.21 rhe idealized 
8-scding function (i.e. g(i, il, 0 ) )  is shown as a dashed h e .  

MCT at T = 0.20,0.21 (i.e. for two to three decades). The theoretical curves in this figure 
demonstrate again that the effects of the hopping parameter, which modify the idealized 
master function, become noticeable at long rescaled times. 

4.2. Hopping parameter and critical temperature 

With the extended analysis of the line shape of $;(t) in the p-relaxation regime one can 
derive a more precise estimate of Tc and additionally obtain the temperature dependence of 
the hopping parameter 8 by virtue of (9). These equations need the microscopic time scale 
to as input. As mentioned above the temperature dependence of to can be obtained either 
from the Rouse fit (denoted by $" [20]) or from the prefactor h;r; (denoted by t:") if 
h: is a constant in the considered temperature range. In order to extract the temperature 
dependence of h; figure 10 shows the ratio h;(t,""~/(tom)y versus temperature. This 
ratio decreases slightly with falling temperature. However, the change is so weak that it 
may be approximated by a constant, say by hi  = 0.406, the average of h;(tr")U/(tom)" 
in the interval T E [0.17.0.2]. In the following the trcT-values resulting from h; = 0.406 
will be used instead oft:" (tables 1-3). With this choice the subsequent analysis becomes 
self-consistent in the sense that it only involves fit results of the extended MCT. 

With t2a and the other values of tables 1 and 2 the range of 8-values at a given 
temperature can be calculated, which produces fits of comparable quality. Due to (9) this 
range has to increase with the distance to the critical temperature, which is clearly visible in 
figure 11. This figure and table 3 indicate that the hopping rate 6 is (essentially) independent 
of temperature in this polymeric system. Nevertheless, the effects of hopping which distort 
the p-correlator increase when T is decreased. This can be seen from the fits in figures 5-8 
and from the increase of the rescaled parameter 8 in table 3. 

At fust sight, a temperature-independent hopping parameter seems to contradict (2) 
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which was experimentally confirmed in the abovementioned light scattering studies of 
CKN, salol and PC. However, one has to take into account that the separation parameter 
U of these studies varied over a large temperature range including also temperatures below 
Tc, whereas this simulation is limited to temperatures above T,. Figure 12 shows that U 

varies between -2.5 x in this simulation. If one looks at the change 
of the hopping parameter for comparable U-values in the cited light scattering studies one 
finds that the temperature variation of 6 is rather weak and almost indistinguishable from a 
constant for some of the materials studied. 
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Figure 12 Plot of n versus temperature. The sfm represent the results from table 3. The 
errors are calculated from tables I and 2. The solid line is a least-squares fit, yielding a critical 
temperature of T, = 0.151. The dashed line resulted from the fit shown in figure 13, in which 
C and Tc of (3) as well as S were kept as temperature-independent constraints. 

~ ~ 

Another argument supporting the idea of a constant hopping parameter rests upon the 
temperature dependence of the isothermal compressibility K T .  This temperature dependence 
was studied in [36], where it was found that the product KTT is essentially constant in the 
interval T E [0.16,0.21]. Since this product determines the whole temperature dependence 
of 6 due to (Z), one would not expect the hopping parameter to vary much during the 
simulation. 

The arguments presented can rationalize why thermally activated processes may lead 
to the temperature independence of 6 observed in this study. However, they do not 
exclude the possibility that additional polymer-specific microscopic properties determine 
this parameter. The hopping processes of the MCT for simple liquids result from the 
approximate treatment of ring collisions between the fluid particles: the particle in the cage 
kicks one of its neighbours, which in turn kicks one of its neighbours and so on, until this 
sequence of collisions transfers parts of the original impetus back to the enclosed particle and 
accelerates it [8]. Whereas this dynamic backflow effect is the important ergodicity restoring 
microscopic process in simple liquids, one could conjecture that it is, though present, not as 
important in polymer melts. On the one hand, polymers are heavy objects. In this respect 
they are comparable to colloid particles for which it has been found experimentally that 
hopping processes can be completely neglected [38]. On the other hand, the connectedness 
between the monomers prevents them from moving far away from the backbone of the 
chain. However, the question then arises of what the microscopic origin of the hopping 
processes in a polymer melt could be. At the present stage of this work, the answer can 
only be speculative. It is conceivable that the connectedness between the monomers, which 
was above made responsible for the suppression of the backilow effect, induces a kind of 
a slithering motion of the monomers along the backbone of the chain and thus opens a 
new relaxation channel, not present in simple liquids. Certainly, the sketched picture is 
very reminiscent of the reptation idea [24]. However, the conjectured slithering motion 
is not related to entanglements, as the studied chain length N = 10 is much shorter than 
the entanglement length [33]. It is connected to the freezing of the interchain contribution 
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to the cages. A similar conjecture of anisotropic local motion was also presented in a 
molecular dynamics study of amorphous polyethylene [26]. Whether such an anisotropy of 
the monomeric dynamics develops as T, is approached should be detectable by monitoring 
the motion of the monomers in the internal coordinate system of a chain. Work in this 
direction is under way. 

The temperature independence of the hopping parameter 6 and the strong increase of the 
microscopic time scale to determine the range of applicability of the asymptotic ,%scaling 
law (7). Theoretically the intermediate time window where this asymptotic scaling law 
holds is expected to grow when (U, 6fo) approach the transition point (0,O) [ 121. However, 
the matching point of the Rouse and the p-dynamics moves to longer times with decreasing 
temperature (see figures 5-8) due to the above-discussed increase of Io. At long times the 
cut-off for the p-process is set by the a-relaxation. For lower temperatures the hopping rate 6 
influences the a-relaxation time and restricts the p-relaxation to times shorter than -O.OZ/S 
in our case. Since 6 is independent of temperature, the range of validity of the asymptotic 
scaling law (7) does not increase if temperature is decreased. This temperature independence 
of 6 and the increase of to with decreasing temperature also lead to an unexpected path C in 
the plane of the two relevant control parameters (U, ab). For U negative and approaching 
0, 6to increases contrary to the expectation (2) [8] and the experimental finding in simple 
liquids [13, 141. The asymptotic scaling law (7) consequently shows no increasing range 
of validity upon lowering the temperature. 

log t 
Figure 13. Least-squares fit la the dam (solid lines) in the temperature interval 7 E [0.16.0.21] 
(the temgervure decreases from lefl 10 right in the figure) by OQlimiZhg Ihc three (tempczalure- 
independent) pammeteo. C and T, from (3) as well as 6. The resulting fit p m e t e r s  are 
included in figures 1 I and 12. The acjusted time scales f m  ame summarized in table 4. The 
window 0.6 < $!t)  < 0.9 was chosen for the fit. The horizontal solid tine represents the value 
of the nonergadicily parmeter. 

An explanation of this finding-also related to the microscopic mechanism determining 
&-could be residual aging effects. A glance at figure 2 shows that the a-relaxation time 
increases with the extent of the equilibration of the melt. Due to the abovementioned 
connection between the a-relaxation time and the cut-off of the p-process, one can expect 
the B-time window to grow when the melt is further equilibrated. This suggests that 
nonequilibrium effects could also be responsible for the virtual temperature independence 
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of 6. This raises the interesting question about the validity of the intermediate @-scaling 
law in the presence of nonequilibrium effects and their connection to the parameter S. The 
presented analysis of @:(t) would imply that the extended p-scaling law remains valid and 
describes the intermediate dynamics close to Tc. however, with aging effects which strongly 
affect the hopping parameter 6 .  

Figure 12 shows the temperature dependence of the separation parameter. As (3) 
predicts, one finds a linear relationship between U and T, yielding T, = 0.151& 0.002 
and C = 0.40. This value coincides within the error bars with the critical temperature 
found in the idealized analysis and thus confirms this result. 

According to the asymptotic result of the extended MCT the five parameters in (7) are 
either constant and adopt their values at T, or vary linearly with T - Tc. In the presented 
fits the exponent Q, the nonergodicity parameter f; and the critical amplitude h; were kept 
constant. The hopping rate 6 turned out to be virtually independent of temperature, and U 

showed a linear variation with T - T, (see figures 11 and 12). Guided by these results we 
additionally performed a least-squares fit to the data, in which we tried to find temperature 
independent values for the three parameters C, Tc (see (3)) and S. During the fit only the 
time scale to had to be adjusted at each temperature due to the temperature dependence 
of the Rouse short-time dynamics. The result of this fit is shown in figure 13, and the 
parameter values obtained (6 = 2.82 xIO-*. C = 0.387 and Tc = 0.151) are included in 
figures 11 and 12. In addition, table 4 compiles the resulting r,Mm-values. The quality of 
these least-squares fits is comparable to that of the fits presented in figures 5 4 ,  and the 
determined parameters nicely fall within the previously obtained error bars (see figures 11 
and 12, for instance). 

Table 4. Values of t t m  us@ in the 61 wilh a. 6, fr and h; independent of Emperamre and 
the linem temperature dependence in (3) for c; lhe fit is shown in figure 13. 

0.21 4.00 
0.20 6.29 
0.19 9.49 
0.18 12.40 
0.17 21.61 
0.16 26.87 

However, it has to be pointed out that the least-squares fitting procedure still contains one 
aspect where physical reasoning is needed in order to obtain meaningful results. The results 
are quite sensitive to the choice of the dynamical window in which the fit is optimized. The 
presented fit was performed to the correlators within the range 0.6 4 @:(t) 4 0.9. Shrinking 
the window around the nonergodicity parameter down to 0.7 < @ { ( t )  < 0.85 improves the 
fit in this range somewhat, but the fit parameters are strongly shifted T, moves to Tc = 
0.154 out of the abovegiven error bar, 6 becomes S = 3.5 x10-* and C = 0.42. Moreover, 
this fit can be ruled out by arguments relying on the way corrections to the asymptotic law 
are expected to behave [3, 6, 131. At the beginning of the p-relaxation regime the fit falls 
below the simulation data at the temperature T = 0.17, whereas it lies above the data for the 
other temperatures. Mathematically, this may be interpreted as a change of sign in the short- 
time corrections of the p-master function. This change of sign indicates that the corrections 
do not vanish due to asymptotic scaling hut due to some accidental cancellation effect. 
A fortuitous cancellation of the corrections to the @-scaling law requires that the second- 
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and thud-order corrections are of equal size, which makes doubtful the applicability of the 
first-order result (7). This shows that the noise of the data may lead to qualitatively wrong 
least-squares fits, if the fit interval chosen is too small. On the other hand, if the interval is 
chosen too large, e.g. from 0.5 < @:(I) < 0.95, the numerical procedure interpolates data 
inside and outside of the actual range of validity of (7). As in the first case a non-monotonic 
temperature dependence of the conections is observed and generally the fits worsen also 
close to the nonergodicity parameter. 
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5. Summary 

This paper presents an analysis of the incoherent intermediate scattering function @i(t) ,  in 
the framework of extended mode-coupling theory. The major results of this application 
can be summarized as follows. (1) The predicted two-step relaxation behaviour of the 
extended MCT (beyond the microscopic transients) is observed in the simulation data of 
the supercooled polymer melt. (2) The extended @-theory describes the decay of @;(t)  over 
about 2.5 decades in the temperature range T E [0.16,0.19]. Especially for T < 0.19 
the analysis extends the fit by more than one decade to longer times and thus removes 
the found discrepancies between the simulation data and the idealized analysis in the @- 
relaxation regime. (3) During the fit it is possible to keep all quantities that do not vary 
critically with temperature (i.e. f?. a, h; and 6 )  independent of temperature. The whole 
temperature dependence is carried by the @-time scale tn. This temperature dependence of 
t,, results from that of the scale to, which describes the matching to the short-time transient, 
and from the MCT separation parameter U. From a one obtains a critical temperature of 
T, 2: 0.151. This value coincides with the idealized result within the error bars. (4) The 
results of the extended analysis also corroborate the conclusion of the previous paper 1201: 
the idealized MCT is an useful simplification of the extended theory, provided one applies it 
while keeping hopping effects in mind. (5 )  The long-time dynamics of the a-relaxation can 
be fitted by a Kohlrausch function with a temperature-independent exponent. This implies 
the time-temperature superposition principle. 

In summary. the presented analysis shows that MCT. a theory which has been developed 
for simple liquids, is able to describe quantitatively the relaxation of the considered 
supercooled polymer melt in the ,¶-relaxation regime, provided hopping processes are taken 
into account. The predicted universal dynamical scaling law was monitored for different 
temperatures and over about three decades in time. How the processes called ‘hopping’ in 
this study can be understood in terms of the microscopic properties of the model studicd is 
still an open question. We speculated that they might be related to the interplay between 
cage effect and chain connectivity, which could lead to a more or less slithering, reptation- 
like motion of the monomers (though the studied chains are too short to be entangled). 
Whether this is true represents an interesting problem for future work. It is also possible 
that the temperature independence of 6 results from nonequilibrium effects due to insufficient 
equilibration. In order to answer this question all aging effects have to be eliminated first. 
This has been achieved recently by using a different dynamical algorithm than the one used 
here [40]. Therefore we plan to repeat the extended MCT analysis for the fully equilibrated 
polymer melt, paying then also particular attention to the q-dependence of @;(t).  Besides 
this one could make a systematic study of the lifetime of the cages, since the identity and 
the motion of the neighbours to a given monomers can also be monitored. In this way it 
might be possible to understand how the fractal decay laws of the MCT are created by the 
underlying static and dynamic properties of the model. 
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